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A note on the generalized Lie algebrasl(2)q
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Laboratoire d’Annecy-Le-Vieux de Physique Théorique LAPTH‡, CNRS LAPP, BP 110, F-
74941 Annecy-le-Vieux Cedex, France

Received 20 April 1998

Abstract. In a recent paper, Dobrev and Sudbery classified the highest weight and lowest
weight finite-dimensional irreducible representations of the quantum Lie algebrasl(2)q
introduced by Lyubashenko and Sudbery. The aim of this note is to add to this classification
all the finite-dimensional irreducible representations which have no highest weight and/or no
lowest weight, in the case whenq is a root of unity. For this purpose, we give a description of
the enlarged centre.

1. Introduction

In the notion of ‘quantum groups’ introduced by Drinfeld and Jimbo [1, 2], one actually
refers to the quantization of the enveloping algebraU(G), considered as a Hopf algebra. The
question arises about the existence of a deformation of the Lie algebra itself, and several
authors have more recently made progresses towards a definition of quantized Lie algebras
[3–5].

In [6], Dobrev and Sudbery gave a classification of finite-dimensional irreducible
representations of the quantum Lie algebrasl(2)q as defined in [5] by Lyubashenko
and Sudbery. This classification actually concerns the highest weight and lowest weight
representations. It happens, however, that there exists other classes of finite-dimensional
representations of quantum groups at roots of unity that are useful for physics, namely the
periodic (cyclic) representations [7, 8], which appear for instance in generalizations of the
chiral Potts model [9, 10].

The quantum Lie algebra is defined as a finite-dimensional subspace of the quantized
enveloping algebra that is invariant under the quantum adjoint action. According to [5], the
representation theory ofsl(2)q reduces to that of the algebrasB andF defined below.

The algebraB is generated byX0, X±, C, related by

q2X0X+ −X+X0 = qCX+ (1)

q−2X0X− −X+X0 = −q−1CX− (2)

X+X− −X−X+ = (q + q−1)(C − λX0)X0 (3)

CX± −X±C = CX0−X0C = 0 (4)

whereλ = q − q−1. We will later useq-numbers [p] defined as usual by [p] ≡ qp−q−p
q−q−1 .

A quadratic central element ofB is given by

C ′2 = X−X+ + q−1CX0+ q−2X2
0 (5)
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(normalized by a factor of(q + q−1)−1 with respect to [6]).
The algebrasF and A are defined fromB by adding respectively the relations

C2− λ2C ′2 = 1 andC = 1 on central elements [5].
When interpreted in theUq(sl(2)) context,C corresponds to the usual quadratic Casimir

element, whereas the quadratic central elementC ′2 of B corresponds to a quartic central
element [5].

The classification of finite-dimensional irreducible representations ofUq(sl(2)) at roots
of unity (including periodic ones) was given in [8]. The classification we present here
is very close to the latter. The representations ofB have one more parameter. Unusual
representations of dimension 1 are present.

The methods we use here are similar to those used in [11] in the case ofUq(osp(1|2)),
and more details may be found there.

2. Centre at q2l = 1

A linear basis ofB is given by

X
a−
− X

a+
+ X

a0
0 C

b1C ′2
b2 with a±, a0, b1, b2 ∈ N, a+a− = 0. (6)

This can be proved starting from a basis of the form given in [5], lemma 3.2. Then all
the common powers ofX− andX+ in a monomial can indeed be re-expressed in terms
involving X0, C andC ′2 only, using

X−X+ = C ′2− q−1CX0− q−2X2
0 (7)

= λ−2{−(C2− λ2C ′2)+ (1+ q−2)C(C − λX0)− q−2(C − λX0)
2} (8)

X+X− = C ′2+ qCX0− q2X2
0 (9)

= λ−2{−(C2− λ2C ′2)+ (1+ q2)C(C − λX0)− q2(C − λX0)
2}. (10)

The centre ofB for genericq is generated byC andC ′2. (A linear combination of terms
given by (6) needs, in order to commute withX0, to involve only terms witha+ = a− = 0.
In order to commute withX±, it should not involve terms witha0 6= 0.)

2.1. Lettingq be a root of unity

More precisely letl be the smallest (non-zero) integer such thatq2l = 1.
The centre ofB is now C[C,C ′2, X

l
+, (C − λX0)

l ] + C[C,C ′2, X
l
−, (C − λX0)

l ]. The
sum is not a direct sum and the intersection isC[C,C ′2, (C − λX0)

l ].
The generatorsC, C ′2, Xl± and(C − λX0)

l of the centre ofB whenq2l = 1 are subject
to the relation

Xl−X
l
+ = ql(l−1)λ−2l{−(D2)l + q−lDlQl((q + q−1)CD−1)(C − λX0)

l − (C − λX0)
2l} (11)

whereQl is the polynomial of degreel, related to the Chebichev polynomial of the first
kind, such that

Ql(x + x−1) = xl + x−l (12)

and whereD is defined by

D2 = C2− λ2C ′2. (13)

Note that the right-hand side of (11) is a well-defined polynomial of degreel in D2, and
hence inC ′2.
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To prove formula (11), we proceed as in [12]: we first prove by a simple recursion

X
p
−X

p
+ = λ−2p

p−1∏
r=0

q−2r−1{−qD2q2r + (q + q−1)C(C − λX0)− q−1(C − λX0)
2q−2r} (14)

and then letp = l, so that the operand runs over all the powers ofq2.

3. Finite-dimensional irreducible representations ofB

We now give the classification of finite-dimensional irreducible representations when
q2l = 1, insisting on those with no highest weight (and/or lowest weight) vector, which
were not considered in [6]. We use module notations.

On any finite-dimensional simple module, the central elementsC, C ′2,Xl± and(C−λX0)
l

act as scalars (diagonal matrices with a single eigenvalue), which we denote respectively
by c, c′2, xl± andz, and which satisfy the relation (obtained from (11))

xl−x
l
+ = ql(l−1)λ−2l{−(d2)l + q−ldlQl((q + q−1)cd−1)z− z2} (15)

whered2 ≡ c2− λ2c′2. Note that (15) is a polynomial of degreel in d2, and hence inc′2.
Let M be a finite-dimensional simple module. There exists inM a vectorv0 such that,

in addition toCv0 = cv0, C ′2v0 = c′2v0, Xl±v0 = xl±v0 and (C − λX0)
lv0 = zv0, we also

have
• X0v0 = x0v0 with z = (c − λx0)

l ,
• M = span{Xp+v0, X

p
−v0}p=0,...,l−1 (these vectors being linearly dependent).

The existence ofv0 satisfying the first property is guaranteed by the finite dimension.
The second property is proved by writingM = B.v0, using the basis (6), and observing that
X
p
±v0 are eigenvectors ofC, C ′2 andX0.

3.1. First case:z 6= 0 andx− 6= 0 (X− acts injectively)

We define

vp = x−p− X
p
−v0 (vl ≡ v0). (16)

Then

X0vp = (q2px0− qp[p]c)vp (17)

X−vp = x−vp+1 (18)

X+vp = x−1
− λ

−2{−d2+ (1+ q−2)c(c − λx0)q
2p − q−2(c − λx0)

2q4p}vp−1. (19)

The action ofX+ on vp is computed usingX+vp = x−1
− X+X−vp−1 and equation (10).

The module spanned byvp, p = 0, . . . , l − 1 is simple since the eigenvectorsvp of X0

correspond tol different eigenvalues (this would not be the case withz = 0).
This class of periodic (or semiperiodic whenx+ = 0) l-dimensional representations is

then characterized by the five complex parametersc, c′2, xl± andz, related by the polynomial
relation (15).

3.2. Second case:z 6= 0, x− = 0 andx+ 6= 0 (X+ acts injectively, but notX−)

This case is symmetric to a subcase of the previous one, for whichx+ = 0 was not excluded.
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Let w0 = v0 (such thatX0w0 = x0w0) requiring further thatX−w0 = 0. Such a vector
exists because: (i)X− is nilpotent; (ii) the eigenspace ofX− related to the eigenvalue 0 is
stable under the action ofX0. We havec′2 = q2x2

0 − qcx0 andz = (c − λx0)
l . We define

wp = x−p+ X
p
+w0 (wl ≡ w0). (20)

Then

X0wp = (q−2px0+ q−p[p]c)wp (21)

X+wp = x+wp+1 (22)

X−wp = x−1
+ λ

−2{−d2+ (1+ q2)c(c − λx0)q
−2p − q2(c − λx0)

2q−4p}wp−1. (23)

The action ofX− onwp is computed usingX−wp = x−1
+ X−X+wp−1 and equation (8). The

module spanned bywp, p = 0, . . . , l − 1 is again simple.
This class of semiperiodicl-dimensional representations is then characterised by the

three complex parametersc, x0, xl+. The parametersc′2 and z are related to those by
c′2 = q2x2

0 − qcx0 andz = (c − λx0)
l .

3.3. Third case:z 6= 0 andx− = x+ = 0 (highest weight and lowest weight representation)

This case has been studied in details in [6]. We just give a summary of the classification
given there.
• There are one-parameter irreducible representations of dimensionn < l, described by

Cvp = cvp (24)

X0vp = λ−1
(
c − q2pν

)
vp (25)

X−vp = vp+1 X−vn−1 = 0 (26)

X+vp = λ−1[p]qp−2ν{(q2+ 1)c − (q2p + 1)ν}vp−1 (27)

with the constraint(q2 + 1)c = (q2n + 1)ν† andν 6= 0. Note that whenl = 2, n = 1, this
is a two-parameter representation.
• There arel-dimensional irreducible representations, also described by (27) (with

n = l), and characterized by two parametersc and ν 6= 0, with the constraint that
(q2 + 1)c − (q2p + 1)ν 6= 0 for p = 1, . . . , l − 1. These representations do not exist
when l = 2.

3.4. Fourth case:z = 0

Supposing firstx− 6= 0, we definevp, p = 0, . . . , l − 1 as in the first case. The action
of X0, X± are as in (17)–(19). Now, this defines a reducible representation since all the
eigenvalues ofX0 are equal. Irreducible one-dimensional subrepresentations are defined by
any vectorv =∑l−1

p=0 q
2kpvp, and

Cv = cv
C ′2v = c′2v
X0v = x0v

X±v = x ′±v
with

c − λx0 = 0
x ′± = q±2kx±
x+x− = c′2− λ−2c2 = −λ−2d2.

(28)

Considering then the casex− = 0, x+ 6= 0, and following the construction defined by
(20)–(23) again leads to (28). The casez = x− = x+ = 0, already in the classification of
[6], is also described by (28).

† Note that with this parametrization, it is not necessary to distinguish the caseq2n + 1= 0, i.e.n = l/2, whenl
is even, for whichc = 0. This is, however, not true for representations ofA, for which c = 1.
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This class of one-dimensional representations described by (28) is characterized by three
continuous parametersx0, x ′±.

Remark.Even in the case whenq is generic, there exists (semi)periodic representations of
dimension 1, given by

X0v = x0v Cv = cv X±v = x±v with c − λx0 = 0. (29)

3.5. Representations ofA

The irreducible finite-dimensional representations ofA are given by fixingc = 1 in
the previous classification. This is generally possible, except for the representations of
dimensionl/2 (whenl/2 ∈ N) for which the constraint wasc = 0.

4. Finite-dimensional irreducible representations ofF

The algebraF is defined fromB as its quotient by the relationC2 = 1+ λ2C ′2, i.e.D2 = 1
(13). One obtains the irreducible finite-dimensional representations ofF from those ofB by
imposing the supplementary conditiond2 = c2− λ2c′2 = 1 on the parameters. Generically,
the parameters are thenc, xl± andz, eigenvalues ofC, Xl± and(C − λX0)

l , related by

xl−x
l
+ = ql(l−1)λ−2l{−1+ q−ldlQl((q + q−1)c)z− z2}. (30)

We still consider only the case whenq is a root of unity. The classification is then the
following.

4.1. First case:z 6= 0 andx− 6= 0

The representations with injective action ofX−, of dimensionl, are described by (16)–(19)
with d2 = 1. They depend on the parametersc, xl± andz, related by (30).

4.2. Second case:z 6= 0, x− = 0 andx+ 6= 0

The representations with nilpotent action ofX− and injective action ofX+, of dimension
l, are described by (20)–(23) withd2 = 1. This class of semiperiodicl-dimensional
representations depends on the parametersν, xl+, from which c, x0 and z are given by
c = (qν + q−1ν−1)/[2], x0 = λ−1(c − ν) andz = νl .

4.3. Third case:z 6= 0 andx− = x+ = 0

This case corresponds to the classification in [6].
• The representations of dimensionn < l are described by (27) with [2]c = q−1ν+qν−1

and ν2 = q−2n+2. Hence, they are labelled by the dimensionn and a signε such that
ν = εq−n+1.
• The representations of dimensionl are described by (27) with again [2]c = q−1ν +

qν−1, and nowν2 6= q−2p+2 for p = 1, . . . , l − 1. They are labelled by one parameterν.
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4.4. Fourth case:z = 0

The unusual representations of dimension 1 described by (28) still exist forF , with d2 = 1.
These representations are necessarily periodic sincex+x− = −λ−2, which explains why
they are not in the classification of [6]. They depend on two parametersx0 andx+.
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