

Home Search Collections Journals About Contact us My IOPscience

A note on the generalized Lie algebra ${}^{sl(2)_q}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 6647

(http://iopscience.iop.org/0305-4470/31/31/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.102 The article was downloaded on 02/06/2010 at 07:09

Please note that terms and conditions apply.

A note on the generalized Lie algebra $sl(2)_q$

Daniel Arnaudon[†]

Laboratoire d'Annecy-Le-Vieux de Physique Théorique LAPTH[‡], CNRS LAPP, BP 110, F-74941 Annecy-le-Vieux Cedex, France

Received 20 April 1998

Abstract. In a recent paper, Dobrev and Sudbery classified the highest weight and lowest weight finite-dimensional irreducible representations of the quantum Lie algebra $sl(2)_q$ introduced by Lyubashenko and Sudbery. The aim of this note is to add to this classification all the finite-dimensional irreducible representations which have no highest weight and/or no lowest weight, in the case when q is a root of unity. For this purpose, we give a description of the enlarged centre.

1. Introduction

In the notion of 'quantum groups' introduced by Drinfeld and Jimbo [1, 2], one actually refers to the quantization of the enveloping algebra $\mathcal{U}(\mathcal{G})$, considered as a Hopf algebra. The question arises about the existence of a deformation of the Lie algebra itself, and several authors have more recently made progresses towards a definition of quantized Lie algebras [3–5].

In [6], Dobrev and Sudbery gave a classification of finite-dimensional irreducible representations of the quantum Lie algebra $sl(2)_q$ as defined in [5] by Lyubashenko and Sudbery. This classification actually concerns the highest weight and lowest weight representations. It happens, however, that there exists other classes of finite-dimensional representations of quantum groups at roots of unity that are useful for physics, namely the periodic (cyclic) representations [7, 8], which appear for instance in generalizations of the chiral Potts model [9, 10].

The quantum Lie algebra is defined as a finite-dimensional subspace of the quantized enveloping algebra that is invariant under the quantum adjoint action. According to [5], the representation theory of $sl(2)_q$ reduces to that of the algebras \mathcal{B} and \mathcal{F} defined below.

The algebra \mathcal{B} is generated by X_0, X_{\pm}, C , related by

$$q^2 X_0 X_+ - X_+ X_0 = q C X_+ \tag{1}$$

$$q^{-2}X_0X_- - X_+X_0 = -q^{-1}CX_-$$
⁽²⁾

$$X_{+}X_{-} - X_{-}X_{+} = (q + q^{-1})(C - \lambda X_{0})X_{0}$$
(3)

$$CX_{\pm} - X_{\pm}C = CX_0 - X_0C = 0 \tag{4}$$

where $\lambda = q - q^{-1}$. We will later use q-numbers [p] defined as usual by $[p] \equiv \frac{q^p - q^{-p}}{q - q^{-1}}$. A quadratic central element of \mathcal{B} is given by

$$C_2' = X_- X_+ + q^{-1} C X_0 + q^{-2} X_0^2$$
(5)

† E-mail address: Daniel.Arnaudon@lapp.in2p3.fr

‡ URA 1436 du CNRS, associée à l'Université de Savoie.

0305-4470/98/316647+06\$19.50 © 1998 IOP Publishing Ltd

6647

(normalized by a factor of $(q + q^{-1})^{-1}$ with respect to [6]).

The algebras \mathcal{F} and \mathcal{A} are defined from \mathcal{B} by adding respectively the relations $C^2 - \lambda^2 C'_2 = 1$ and C = 1 on central elements [5].

When interpreted in the $U_q(sl(2))$ context, *C* corresponds to the usual quadratic Casimir element, whereas the quadratic central element C'_2 of \mathcal{B} corresponds to a quartic central element [5].

The classification of finite-dimensional irreducible representations of $\mathcal{U}_q(sl(2))$ at roots of unity (including periodic ones) was given in [8]. The classification we present here is very close to the latter. The representations of \mathcal{B} have one more parameter. Unusual representations of dimension 1 are present.

The methods we use here are similar to those used in [11] in the case of $U_q(osp(1|2))$, and more details may be found there.

2. Centre at $q^{2l} = 1$

A linear basis of \mathcal{B} is given by

$$X_{-}^{a_{-}}X_{+}^{a_{+}}X_{0}^{a_{0}}C_{2}^{b_{1}}C_{2}^{\prime b_{2}} \qquad \text{with } a_{\pm}, a_{0}, b_{1}, b_{2} \in \mathbb{N}, a_{+}a_{-} = 0.$$
(6)

This can be proved starting from a basis of the form given in [5], lemma 3.2. Then all the common powers of X_{-} and X_{+} in a monomial can indeed be re-expressed in terms involving X_0 , C and C'_2 only, using

$$X_{-}X_{+} = C_{2}' - q^{-1}CX_{0} - q^{-2}X_{0}^{2}$$
⁽⁷⁾

$$= \lambda^{-2} \{ -(C^2 - \lambda^2 C'_2) + (1 + q^{-2})C(C - \lambda X_0) - q^{-2}(C - \lambda X_0)^2 \}$$
(8)

$$X_{+}X_{-} = C'_{2} + qCX_{0} - q^{2}X_{0}^{2}$$

$$= \lambda^{-2} \{ -(C^{2} - \lambda^{2}C'_{2}) + (1 + q^{2})C(C - \lambda X_{0}) - q^{2}(C - \lambda X_{0})^{2} \}.$$
(10)

The centre of \mathcal{B} for generic q is generated by C and C'_2 . (A linear combination of terms given by (6) needs, in order to commute with X_0 , to involve only terms with $a_+ = a_- = 0$. In order to commute with X_{\pm} , it should not involve terms with $a_0 \neq 0$.)

2.1. Letting q be a root of unity

More precisely let *l* be the smallest (non-zero) integer such that $q^{2l} = 1$.

The centre of \mathcal{B} is now $\mathbb{C}[C, C_2, X_+^l, (C - \lambda X_0)^l] + \mathbb{C}[C, C_2, X_-^l, (C - \lambda X_0)^l]$. The sum is not a direct sum and the intersection is $\mathbb{C}[C, C_2', (C - \lambda X_0)^l]$.

The generators C, C'_2 , X'_{\pm} and $(C - \lambda X_0)^l$ of the centre of \mathcal{B} when $q^{2l} = 1$ are subject to the relation

$$X_{-}^{l}X_{+}^{l} = q^{l(l-1)}\lambda^{-2l} \{ -(\mathcal{D}^{2})^{l} + q^{-l}\mathcal{D}^{l}\mathcal{Q}_{l}((q+q^{-1})C\mathcal{D}^{-1})(C-\lambda X_{0})^{l} - (C-\lambda X_{0})^{2l} \}$$
(11)

where Q_l is the polynomial of degree l, related to the Chebichev polynomial of the first kind, such that

$$Q_l(x + x^{-1}) = x^l + x^{-l}$$
(12)

and where \mathcal{D} is defined by

$$\mathcal{D}^2 = C^2 - \lambda^2 C_2'. \tag{13}$$

Note that the right-hand side of (11) is a well-defined polynomial of degree l in \mathcal{D}^2 , and hence in C'_2 .

To prove formula (11), we proceed as in [12]: we first prove by a simple recursion

$$X_{-}^{p}X_{+}^{p} = \lambda^{-2p} \prod_{r=0}^{p-1} q^{-2r-1} \{-q \mathcal{D}^{2}q^{2r} + (q+q^{-1})C(C-\lambda X_{0}) - q^{-1}(C-\lambda X_{0})^{2}q^{-2r}\}$$
(14)

and then let p = l, so that the operand runs over all the powers of q^2 .

3. Finite-dimensional irreducible representations of \mathcal{B}

We now give the classification of finite-dimensional irreducible representations when $q^{2l} = 1$, insisting on those with no highest weight (and/or lowest weight) vector, which were not considered in [6]. We use module notations.

On any finite-dimensional simple module, the central elements C, C'_2 , X^l_{\pm} and $(C - \lambda X_0)^l$ act as scalars (diagonal matrices with a single eigenvalue), which we denote respectively by c, c'_2 , x^l_{\pm} and z, and which satisfy the relation (obtained from (11))

$$x_{-}^{l}x_{+}^{l} = q^{l(l-1)}\lambda^{-2l}\{-(d^{2})^{l} + q^{-l}d^{l}\mathcal{Q}_{l}((q+q^{-1})cd^{-1})z - z^{2}\}$$
(15)

where $d^2 \equiv c^2 - \lambda^2 c'_2$. Note that (15) is a polynomial of degree *l* in d^2 , and hence in c'_2 .

Let *M* be a finite-dimensional simple module. There exists in *M* a vector v_0 such that, in addition to $Cv_0 = cv_0$, $C'_2v_0 = c'_2v_0$, $X^l_{\pm}v_0 = x^l_{\pm}v_0$ and $(C - \lambda X_0)^l v_0 = zv_0$, we also have

• $X_0 v_0 = x_0 v_0$ with $z = (c - \lambda x_0)^l$,

• $M = \text{span}\{X_{+}^{p}v_{0}, X_{-}^{p}v_{0}\}_{p=0,\dots,l-1}$ (these vectors being linearly dependent).

The existence of v_0 satisfying the first property is guaranteed by the finite dimension. The second property is proved by writing $M = \mathcal{B}.v_0$, using the basis (6), and observing that $X_{\pm}^p v_0$ are eigenvectors of C, C'_2 and X_0 .

3.1. First case: $z \neq 0$ and $x_{-} \neq 0$ (X_{-} acts injectively)

We define

$$v_p = x_-^{-p} X_-^p v_0$$
 $(v_l \equiv v_0).$ (16)

Then

$$X_0 v_p = (q^{2p} x_0 - q^p [p] c) v_p \tag{17}$$

$$X_{-}v_{p} = x_{-}v_{p+1} \tag{18}$$

$$X_{+}v_{p} = x_{-}^{-1}\lambda^{-2} \{-d^{2} + (1+q^{-2})c(c-\lambda x_{0})q^{2p} - q^{-2}(c-\lambda x_{0})^{2}q^{4p}\}v_{p-1}.$$
(19)

The action of X_+ on v_p is computed using $X_+v_p = x_-^{-1}X_+X_-v_{p-1}$ and equation (10). The module spanned by v_p , p = 0, ..., l - 1 is simple since the eigenvectors v_p of X_0 correspond to l different eigenvalues (this would not be the case with z = 0).

This class of periodic (or semiperiodic when $x_{\pm} = 0$) *l*-dimensional representations is then characterized by the five complex parameters c, c'_2 , x^l_{\pm} and z, related by the polynomial relation (15).

3.2. Second case: $z \neq 0$, $x_{-} = 0$ and $x_{+} \neq 0$ (X_{+} acts injectively, but not X_{-})

This case is symmetric to a subcase of the previous one, for which $x_{+} = 0$ was not excluded.

6650 D Arnaudon

Let $w_0 = v_0$ (such that $X_0w_0 = x_0w_0$) requiring further that $X_-w_0 = 0$. Such a vector exists because: (i) X_- is nilpotent; (ii) the eigenspace of X_- related to the eigenvalue 0 is stable under the action of X_0 . We have $c'_2 = q^2x_0^2 - qcx_0$ and $z = (c - \lambda x_0)^l$. We define

$$w_p = x_+^{-p} X_+^p w_0$$
 $(w_l \equiv w_0).$ (20)

Then

$$X_0 w_p = (q^{-2p} x_0 + q^{-p} [p] c) w_p$$
(21)

$$X_{+}w_{p} = x_{+}w_{p+1}$$
(22)

$$X_{-}w_{p} = x_{+}^{-1}\lambda^{-2} \{-d^{2} + (1+q^{2})c(c-\lambda x_{0})q^{-2p} - q^{2}(c-\lambda x_{0})^{2}q^{-4p}\}w_{p-1}.$$
(23)

The action of X_- on w_p is computed using $X_-w_p = x_+^{-1}X_-X_+w_{p-1}$ and equation (8). The module spanned by w_p , p = 0, ..., l - 1 is again simple.

This class of semiperiodic *l*-dimensional representations is then characterised by the three complex parameters c, x_0 , x'_+ . The parameters c'_2 and z are related to those by $c'_2 = q^2 x_0^2 - q c x_0$ and $z = (c - \lambda x_0)^l$.

3.3. Third case: $z \neq 0$ and $x_{-} = x_{+} = 0$ (highest weight and lowest weight representation)

This case has been studied in details in [6]. We just give a summary of the classification given there.

• There are one-parameter irreducible representations of dimension n < l, described by

$$Cv_p = cv_p \tag{24}$$

$$X_0 v_p = \lambda^{-1} \left(c - q^{2p} v \right) v_p \tag{25}$$

$$X_{-}v_{p} = v_{p+1} \qquad X_{-}v_{n-1} = 0$$
(26)

$$X_{+}v_{p} = \lambda^{-1}[p]q^{p-2}v\{(q^{2}+1)c - (q^{2p}+1)v\}v_{p-1}$$
(27)

with the constraint $(q^2 + 1)c = (q^{2n} + 1)v^{\dagger}$ and $v \neq 0$. Note that when l = 2, n = 1, this is a two-parameter representation.

• There are *l*-dimensional irreducible representations, also described by (27) (with n = l), and characterized by two parameters c and $v \neq 0$, with the constraint that $(q^2 + 1)c - (q^{2p} + 1)v \neq 0$ for p = 1, ..., l - 1. These representations do not exist when l = 2.

3.4. Fourth case: z = 0

Supposing first $x_{-} \neq 0$, we define v_p , p = 0, ..., l-1 as in the first case. The action of X_0 , X_{\pm} are as in (17)–(19). Now, this defines a reducible representation since all the eigenvalues of X_0 are equal. Irreducible one-dimensional subrepresentations are defined by any vector $v = \sum_{p=0}^{l-1} q^{2kp} v_p$, and

$$Cv = cv
C'_{2}v = c'_{2}v
X_{0}v = x_{0}v
X_{+}v = x'_{+}v$$

$$c - \lambda x_{0} = 0
with x'_{\pm} = q^{\pm 2k}x_{\pm}
x_{+}x_{-} = c'_{2} - \lambda^{-2}c^{2} = -\lambda^{-2}d^{2}.$$
(28)

Considering then the case $x_{-} = 0$, $x_{+} \neq 0$, and following the construction defined by (20)–(23) again leads to (28). The case $z = x_{-} = x_{+} = 0$, already in the classification of [6], is also described by (28).

[†] Note that with this parametrization, it is not necessary to distinguish the case $q^{2n} + 1 = 0$, i.e. n = l/2, when *l* is even, for which c = 0. This is, however, not true for representations of A, for which c = 1.

This class of one-dimensional representations described by (28) is characterized by three continuous parameters x_0 , x'_+ .

Remark. Even in the case when q is generic, there exists (semi)periodic representations of dimension 1, given by

$$X_0 v = x_0 v$$
 $Cv = cv$ $X_{\pm} v = x_{\pm} v$ with $c - \lambda x_0 = 0.$ (29)

3.5. Representations of A

The irreducible finite-dimensional representations of \mathcal{A} are given by fixing c = 1 in the previous classification. This is generally possible, except for the representations of dimension l/2 (when $l/2 \in \mathbb{N}$) for which the constraint was c = 0.

4. Finite-dimensional irreducible representations of \mathcal{F}

The algebra \mathcal{F} is defined from \mathcal{B} as its quotient by the relation $C^2 = 1 + \lambda^2 C'_2$, i.e. $\mathcal{D}^2 = 1$ (13). One obtains the irreducible finite-dimensional representations of \mathcal{F} from those of \mathcal{B} by imposing the supplementary condition $d^2 = c^2 - \lambda^2 c'_2 = 1$ on the parameters. Generically, the parameters are then c, x'_{\pm} and z, eigenvalues of C, X'_{\pm} and $(C - \lambda X_0)^l$, related by

$$x_{-}^{l}x_{+}^{l} = q^{l(l-1)}\lambda^{-2l}\{-1 + q^{-l}d^{l}\mathcal{Q}_{l}((q+q^{-1})c)z - z^{2}\}.$$
(30)

We still consider only the case when q is a root of unity. The classification is then the following.

4.1. First case: $z \neq 0$ and $x_- \neq 0$

The representations with injective action of X_{-} , of dimension l, are described by (16)–(19) with $d^2 = 1$. They depend on the parameters c, x_{\pm}^l and z, related by (30).

4.2. Second case: $z \neq 0$, $x_- = 0$ and $x_+ \neq 0$

The representations with nilpotent action of X_{-} and injective action of X_{+} , of dimension l, are described by (20)–(23) with $d^{2} = 1$. This class of semiperiodic l-dimensional representations depends on the parameters ν , x_{+}^{l} , from which c, x_{0} and z are given by $c = (q\nu + q^{-1}\nu^{-1})/[2]$, $x_{0} = \lambda^{-1}(c - \nu)$ and $z = \nu^{l}$.

4.3. Third case: $z \neq 0$ and $x_{-} = x_{+} = 0$

This case corresponds to the classification in [6].

• The representations of dimension n < l are described by (27) with $[2]c = q^{-1}v + qv^{-1}$ and $v^2 = q^{-2n+2}$. Hence, they are labelled by the dimension n and a sign ϵ such that $v = \epsilon q^{-n+1}$.

• The representations of dimension l are described by (27) with again $[2]c = q^{-1}v + qv^{-1}$, and now $v^2 \neq q^{-2p+2}$ for p = 1, ..., l - 1. They are labelled by one parameter v.

4.4. Fourth case: z = 0

The unusual representations of dimension 1 described by (28) still exist for \mathcal{F} , with $d^2 = 1$. These representations are necessarily periodic since $x_+x_- = -\lambda^{-2}$, which explains why they are not in the classification of [6]. They depend on two parameters x_0 and x_+ .

Acknowledgment

This work was partially supported by European Community contract TMR FMRX-CT96.0012.

References

- Drinfeld V 1986 Quantum groups Proc. Int. Congress of Mathematicians (Berkeley, CA) vol 1 (New York: Academic) p 798
- [2] Jimbo M 1985 q-difference analogue of $\mathcal{U}(\mathcal{G})$ and the Yang-Baxter equation Lett. Math. Phys. 10 63
- [3] Majid S 1994 Quantum and braided Lie algebras J. Geom. Phys. 13 307
- [4] Delius G W and Huffmann A 1996 On quantum Lie algebras and quantum root systems J. Phys. A: Math. Gen. 29 1703–22
- [5] Lyubashenko V and Sudbery A 1995 Quantum Lie algebras of type A_n J. Math. Phys. **39** 3487–504
- [6] Dobrev V K and Sudbery A 1998 Representations of the generalized Lie algebra $sl(2)_q$ J. Phys. A: Math. Gen. **31** 6635
- [7] Sklyanin E K 1983 Some algebraic structures connected with the Yang–Baxter equation. Representations of quantum algebras *Funct. Anal. Appl.* 17 273
- [8] Roche P and Arnaudon D 1989 Irreducible representations of the quantum analogue of SU(2) Lett. Math. Phys. 17 295
- Bazhanov V V and Kashaev R M 1991 Cyclic l operator related with a three state r matrix Commun. Math. Phys. 136 607–24
- [10] Date E, Jimbo M, Miki K and Miwa T 1991 Generalized chiral potts models and minimal cyclic representations of $U_q(\widehat{gl}(n, \mathbb{C}))$ Commun. Math. Phys. 137 133
- [11] Arnaudon D and Bauer M 1997 Scasimir operator, scentre and representations of $U_q(osp(1|2))$ Lett. Math. Phys. 40 307–20
- [12] Kerler T 1989 Darstellungen der quantengruppen und anwendungen Diplomarbeit ETH-Zurich