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Abstract. In a recent paper, Dobrev and Sudbery classified the highest weight and lowest
weight finite-dimensional irreducible representations of the quantum Lie algelfa,
introduced by Lyubashenko and Sudbery. The aim of this note is to add to this classification
all the finite-dimensional irreducible representations which have no highest weight and/or no
lowest weight, in the case whenis a root of unity. For this purpose, we give a description of
the enlarged centre.

1. Introduction

In the notion of ‘quantum groups’ introduced by Drinfeld and Jimbo [1, 2], one actually
refers to the quantization of the enveloping algeh(g), considered as a Hopf algebra. The
guestion arises about the existence of a deformation of the Lie algebra itself, and several
authors have more recently made progresses towards a definition of quantized Lie algebras
[3-5].

In [6], Dobrev and Sudbery gave a classification of finite-dimensional irreducible
representations of the quantum Lie algebig?), as defined in [5] by Lyubashenko
and Sudbery. This classification actually concerns the highest weight and lowest weight
representations. It happens, however, that there exists other classes of finite-dimensional
representations of quantum groups at roots of unity that are useful for physics, namely the
periodic (cyclic) representations [7, 8], which appear for instance in generalizations of the
chiral Potts model [9, 10].

The quantum Lie algebra is defined as a finite-dimensional subspace of the quantized
enveloping algebra that is invariant under the quantum adjoint action. According to [5], the
representation theory 6f(2), reduces to that of the algebr&sand F defined below.

The algebras is generated by, X4, C, related by

q*XoX, — X Xo=qCX, 1)
g °XoX_ — X, Xo=—q CX_ )
XiXo =X Xy =(g+q H(C —2rXo)Xo ®3)
CX:—X:C=CXo—XoC =0 (4)
wherei = ¢ — ¢g~1. We will later useg-numbers p] defined as usual by = "q”_‘;’:f.
A quadratic central element & is given by
Cy=X_X,+q 'CXo+q°X5 (5)
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(normalized by a factor ofg + ¢—*)~1 with respect to [6]).

The algebrasF and A are defined fromB by adding respectively the relations
C? — A2C, =1 andC = 1 on central elements [5].

When interpreted in th&(, (s/(2)) context,C corresponds to the usual quadratic Casimir
element, whereas the quadratic central elen@nbf B corresponds to a quartic central
element [5].

The classification of finite-dimensional irreducible representatiorig, 6f/(2)) at roots
of unity (including periodic ones) was given in [8]. The classification we present here
is very close to the latter. The representationd3ofiave one more parameter. Unusual
representations of dimension 1 are present.

The methods we use here are similar to those used in [11] in the césgas(1|2)),
and more details may be found there.

2. Centre atg? =1

A linear basis of3 is given by
X’in*Xg"CblCéb2 with a., ag, b1, b2 € N,a,a_ = 0. (6)

This can be proved starting from a basis of the form given in [5], lemma 3.2. Then all
the common powers ok_ and X, in a monomial can indeed be re-expressed in terms
involving Xo, C andC; only, using

X X, =Ch—q *CXo—q%X3 (7)
= A"2{—(C* = A*CY) + (1 + ¢ 5C(C — 1X0) — ¢ *(C — 1X0)%} (8)
X X_ =Ch4+qCXo—q°X3 (9)
= A72{(—(C? = 2%CY) + (1 +¢*)C(C — AXo) — ¢*(C — 1 X0)*}. (10)

The centre of3 for genericg is generated by andC;. (A linear combination of terms
given by (6) needs, in order to commute witl, to involve only terms withu, = a_ = 0.
In order to commute withX ., it should not involve terms witlg # 0.)

2.1. Lettingg be a root of unity

More precisely let be the smallest (non-zero) integer such tét= 1.

The centre ofB is now C[C, C}, X\, (C — AX0)'] + C[C, C}, X, (C — 2X0)']. The
sum is not a direct sum and the intersectiolC[€, Cj, (C — AXo)'].

The generator€’, C,, X!, and(C — 1 Xo)' of the centre of3 wheng? = 1 are subject
to the relation

X' X! =g (DY +¢7'D'Qi((q + ¢HCDH(C — 2X0) — (C — 1X0)?) (11)

where Q; is the polynomial of degreé related to the Chebichev polynomial of the first
kind, such that

Qx+xhH=x"+x" (12)
and whereD is defined by
D? = C? - \2C), (13)

Note that the right-hand side of (11) is a well-defined polynomial of degieeD?, and
hence inCy.
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To prove formula (11), we proceed as in [12]: we first prove by a simple recursion

p—1
XPxP =174 H=4D*¢” + (g + 47 HC(C — 1Xo) — ¢ M (C —2X0)’q ™} (14)
r=0

and then letp = I, so that the operand runs over all the powerg of

3. Finite-dimensional irreducible representations of53

We now give the classification of finite-dimensional irreducible representations when
g% = 1, insisting on those with no highest weight (and/or lowest weight) vector, which
were not considered in [6]. We use module notations.

On any finite-dimensional simple module, the central eleménts,, X', and(C —1Xo)’
act as scalars (diagonal matrices with a single eigenvalue), which we denote respectively
by ¢, 5, x| andz, and which satisfy the relation (obtained from (11))

xlxl =" =@ +q7'd' Qg + g THed Mz — ) (15)

whered? = ¢? — 1%c,. Note that (15) is a polynomial of degréén d2, and hence i,

Let M be a finite-dimensional simple module. There existdfira vectorvg such that,
in addition to Cvg = cvg, Chvg = chvo, X', vo = x'.vp and (C — AXo)'vo = zvo, We also
have

e Xovg = XoUg with z = (c — )x)Co)l,

The existence ofg satisfying the first property is guaranteed by the finite dimension.
The second property is proved by writidg = B.vg, using the basis (6), and observing that
X"Zvo are eigenvectors of, C, and Xo.

3.1. First case:z # 0 andx_ # 0 (X_ acts injectively)

We define

v, =x_"X v (v = o). (16)
Then
Xovp = (¢%x0 — q”[plc)v, (17)
X v, =x_vp11 (18)
Xiv, = 2 —d? + A+ g% e(c — Ax0)g? — g% (c — )\xo)zq“p}vp,l. (19)

The action ofX, on v, is computed using¥,v, = x:1X+X,vp,1 and equation (10).
The module spanned by,, p = 0,...,1 — 1 is simple since the eigenvectors of Xg
correspond td different eigenvalues (this would not be the case with 0).

This class of periodic (or semiperiodic whef = 0) /-dimensional representations is
then characterized by the five complex paramaters, x. andz, related by the polynomial
relation (15).

3.2. Second case; # 0, x_ = 0 andx, # 0 (X, acts injectively, but noX )

This case is symmetric to a subcase of the previous one, for whieh 0 was not excluded.
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Let wg = v (such thatXowo = xowg) requiring further thatX _wge = 0. Such a vector
exists because: (iX_ is nilpotent; (ii) the eigenspace &f_ related to the eigenvalue 0O is
stable under the action dofo. We havec, = ¢x3 — gcxo andz = (c — Axo)'. We define

w, = x." X wo (w; = wo). (20)
Then
Xow, = (qiszo +q "[plow, (21)
Xiw, = X4 Wpi1 (22)
X_w, = x4 —d? + (1 + ¢®)c(c — hxo)g " — g%(c — Ax0)°q~ "hw,_1. (23)
The action ofX_ onw, is computed using_w, = x;*X_X w,_1 and equation (8). The
module spanned by,, p =0,...,1 —1 is again simple.

This class of semiperiodi¢-dimensional representations is then characterised by the
three complex parameteks xg, xﬂ_. The parameters), and z are related to those by
¢y = q’x% — qexg andz = (¢ — Axo)'.

3.3. Third casez # 0 andx_ = x, = 0 (highest weight and lowest weight representation)

This case has been studied in details in [6]. We just give a summary of the classification
given there.
e There are one-parameter irreducible representations of dimemsioh described by

Cv, = cv, (24)
Xov, =271 (c— qz”v) vp (25)
X_v, =Vpq1 X_v,.1=0 (26)
X1v, = A7 plg" 2v{(g® + D — (g% + Dv}vps (27)

with the constrain(g? + 1)c = (¢** + 1)vf andv # 0. Note that wher = 2, n = 1, this
is a two-parameter representation.

e There arel-dimensional irreducible representations, also described by (27) (with
n = [), and characterized by two parametersand v # 0, with the constraint that
(> +Dc— (@?* + v #0for p =1,...,1 — 1. These representations do not exist
when/ = 2.

3.4. Fourth casez =0

Supposing firstc. # 0, we definev,, p = 0,...,1 — 1 as in the first case. The action

of Xo, X1 are as in (17)—(19). Now, this defines a reducible representation since all the
eigenvalues oy are equal. Irreducible one-dimensional subrepresentations are defined by
any vectorv = Y/~ ¢%*?v,, and

g/vvz—ccv’v ¢ =¥ =0

sz _ x2 0 with x/, = ¢*%x. (28)
v =70 Xpx_ = ch— A72c% = -1 7242,

Xiv=x}v

Considering then the case. = 0, x; # 0, and following the construction defined by
(20)—(23) again leads to (28). The case- x_ = x,. = 0, already in the classification of
[6], is also described by (28).

 Note that with this parametrization, it is not necessary to distinguish theq®se1 = 0, i.e.n = [/2, when/
is even, for whichc = 0. This is, however, not true for representations4ffor whichc = 1.
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This class of one-dimensional representations described by (28) is characterized by three
continuous parametens, x/,.

Remark.Even in the case whed is generic, there exists (semi)periodic representations of
dimension 1, given by

Xov = xgv Cv=cv X410 =x4v with ¢ — Axg = 0. (29)

3.5. Representations of

The irreducible finite-dimensional representations.Afare given by fixinge = 1 in
the previous classification. This is generally possible, except for the representations of
dimensionl//2 (when!/2 € N) for which the constraint was = 0.

4. Finite-dimensional irreducible representations of 7

The algebraf is defined from3 as its quotient by the relatioi> = 1+ 12C,, i.e. D? =1
(13). One obtains the irreducible finite-dimensional representatiofsfaim those of3 by
imposing the supplementary conditidf = ¢2 — A%c, = 1 on the parameters. Generically,
the parameters are thenx!, andz, eigenvalues of’, X!, and(C — 1»Xo)', related by

xlxl =g =14+ ¢7'd Qg + g Do)z — 2. (30)

We still consider only the case whenis a root of unity. The classification is then the
following.

4.1. First caseiz # 0 andx_ #0

The representations with injective actionXf , of dimensior/, are described by (16)—(19)
with d?> = 1. They depend on the parametersc, andz, related by (30).

4.2. Second case; # 0,x_ =0andx; #0

The representations with nilpotent action ¥f and injective action ofX,, of dimension
I, are described by (20)—(23) with®> = 1. This class of semiperiodi¢-dimensional
representations depends on the parameiers. , from which ¢, xo and z are given by
c=(@qv+qg /2], xo=21"1c—v) andz ="

4.3. Third caseiz #0andx_ =x, =0

This case corresponds to the classification in [6].
e The representations of dimensionx [ are described by (27) with [2}= ¢ v +gv~?!
andv? = ¢~2*2, Hence, they are labelled by the dimensiorand a signe such that
— —n+1
Vv =¢€q .
e The representations of dimensibrare described by (27) with again {2 ¢~ v +
gv~t, and nowv? # g=?"*2 for p=1,...,1 — 1. They are labelled by one parameter
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4.4. Fourth casez =0

The unusual representations of dimension 1 described by (28) still exigt, faith 4% = 1.
These representations are necessarily periodic singe = —A~2, which explains why
they are not in the classification of [6]. They depend on two paramegeasd x., .
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