A note on the generalized Lie algebra ${ }^{s l(2)_{q}}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 316647
(http://iopscience.iop.org/0305-4470/31/31/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:09

Please note that terms and conditions apply.

A note on the generalized Lie algebra $\operatorname{sl}(2)_{q}$

Daniel Arnaudon \dagger
Laboratoire d'Annecy-Le-Vieux de Physique Théorique LAPTH \ddagger, CNRS LAPP, BP 110, F74941 Annecy-le-Vieux Cedex, France

Received 20 April 1998

Abstract

In a recent paper, Dobrev and Sudbery classified the highest weight and lowest weight finite-dimensional irreducible representations of the quantum Lie algebra $s l(2)_{q}$ introduced by Lyubashenko and Sudbery. The aim of this note is to add to this classification all the finite-dimensional irreducible representations which have no highest weight and/or no lowest weight, in the case when q is a root of unity. For this purpose, we give a description of the enlarged centre.

1. Introduction

In the notion of 'quantum groups' introduced by Drinfeld and Jimbo [1, 2], one actually refers to the quantization of the enveloping algebra $\mathcal{U}(\mathcal{G})$, considered as a Hopf algebra. The question arises about the existence of a deformation of the Lie algebra itself, and several authors have more recently made progresses towards a definition of quantized Lie algebras [3-5].

In [6], Dobrev and Sudbery gave a classification of finite-dimensional irreducible representations of the quantum Lie algebra $s l(2)_{q}$ as defined in [5] by Lyubashenko and Sudbery. This classification actually concerns the highest weight and lowest weight representations. It happens, however, that there exists other classes of finite-dimensional representations of quantum groups at roots of unity that are useful for physics, namely the periodic (cyclic) representations [7, 8], which appear for instance in generalizations of the chiral Potts model [9, 10].

The quantum Lie algebra is defined as a finite-dimensional subspace of the quantized enveloping algebra that is invariant under the quantum adjoint action. According to [5], the representation theory of $\operatorname{sl}(2)_{q}$ reduces to that of the algebras \mathcal{B} and \mathcal{F} defined below.

The algebra \mathcal{B} is generated by $X_{0}, X_{ \pm}, C$, related by

$$
\begin{align*}
& q^{2} X_{0} X_{+}-X_{+} X_{0}=q C X_{+} \tag{1}\\
& q^{-2} X_{0} X_{-}-X_{+} X_{0}=-q^{-1} C X_{-} \tag{2}\\
& X_{+} X_{-}-X_{-} X_{+}=\left(q+q^{-1}\right)\left(C-\lambda X_{0}\right) X_{0} \tag{3}\\
& C X_{ \pm}-X_{ \pm} C=C X_{0}-X_{0} C=0 \tag{4}
\end{align*}
$$

where $\lambda=q-q^{-1}$. We will later use q-numbers $[p]$ defined as usual by $[p] \equiv \frac{q^{p}-q^{-p}}{q-q^{-1}}$.
A quadratic central element of \mathcal{B} is given by

$$
\begin{equation*}
C_{2}^{\prime}=X_{-} X_{+}+q^{-1} C X_{0}+q^{-2} X_{0}^{2} \tag{5}
\end{equation*}
$$

\dagger E-mail address: Daniel.Arnaudon @lapp.in2p3.fr
\ddagger URA 1436 du CNRS, associée à l'Université de Savoie.
(normalized by a factor of $\left(q+q^{-1}\right)^{-1}$ with respect to [6]).
The algebras \mathcal{F} and \mathcal{A} are defined from \mathcal{B} by adding respectively the relations $C^{2}-\lambda^{2} C_{2}^{\prime}=1$ and $C=1$ on central elements [5].

When interpreted in the $\mathcal{U}_{q}(s l(2))$ context, C corresponds to the usual quadratic Casimir element, whereas the quadratic central element C_{2}^{\prime} of \mathcal{B} corresponds to a quartic central element [5].

The classification of finite-dimensional irreducible representations of $\mathcal{U}_{q}(s l(2))$ at roots of unity (including periodic ones) was given in [8]. The classification we present here is very close to the latter. The representations of \mathcal{B} have one more parameter. Unusual representations of dimension 1 are present.

The methods we use here are similar to those used in [11] in the case of $\mathcal{U}_{q}(\operatorname{osp}(1 \mid 2))$, and more details may be found there.

2. Centre at $q^{2 l}=1$

A linear basis of \mathcal{B} is given by

$$
\begin{equation*}
X_{-}^{a_{-}} X_{+}^{a_{+}} X_{0}^{a_{0}} C^{b_{1}} C_{2}^{\prime b_{2}} \quad \text { with } a_{ \pm}, a_{0}, b_{1}, b_{2} \in \mathbb{N}, a_{+} a_{-}=0 \tag{6}
\end{equation*}
$$

This can be proved starting from a basis of the form given in [5], lemma 3.2. Then all the common powers of X_{-}and X_{+}in a monomial can indeed be re-expressed in terms involving X_{0}, C and C_{2}^{\prime} only, using

$$
\begin{align*}
X_{-} X_{+}= & C_{2}^{\prime}-q^{-1} C X_{0}-q^{-2} X_{0}^{2} \tag{7}\\
& =\lambda^{-2}\left\{-\left(C^{2}-\lambda^{2} C_{2}^{\prime}\right)+\left(1+q^{-2}\right) C\left(C-\lambda X_{0}\right)-q^{-2}\left(C-\lambda X_{0}\right)^{2}\right\} \tag{8}\\
X_{+} X_{-}= & C_{2}^{\prime}+q C X_{0}-q^{2} X_{0}^{2} \tag{9}\\
& =\lambda^{-2}\left\{-\left(C^{2}-\lambda^{2} C_{2}^{\prime}\right)+\left(1+q^{2}\right) C\left(C-\lambda X_{0}\right)-q^{2}\left(C-\lambda X_{0}\right)^{2}\right\} \tag{10}
\end{align*}
$$

The centre of \mathcal{B} for generic q is generated by C and C_{2}^{\prime}. (A linear combination of terms given by (6) needs, in order to commute with X_{0}, to involve only terms with $a_{+}=a_{-}=0$. In order to commute with $X_{ \pm}$, it should not involve terms with $a_{0} \neq 0$.)

2.1. Letting q be a root of unity

More precisely let l be the smallest (non-zero) integer such that $q^{2 l}=1$.
The centre of \mathcal{B} is now $\mathbb{C}\left[C, C_{2}^{\prime}, X_{+}^{l},\left(C-\lambda X_{0}\right)^{l}\right]+\mathbb{C}\left[C, C_{2}^{\prime}, X_{-}^{l},\left(C-\lambda X_{0}\right)^{l}\right]$. The sum is not a direct sum and the intersection is $\mathbb{C}\left[C, C_{2}^{\prime},\left(C-\lambda X_{0}\right)^{l}\right]$.

The generators $C, C_{2}^{\prime}, X_{ \pm}^{l}$ and $\left(C-\lambda X_{0}\right)^{l}$ of the centre of \mathcal{B} when $q^{2 l}=1$ are subject to the relation

$$
\begin{equation*}
X_{-}^{l} X_{+}^{l}=q^{l(l-1)} \lambda^{-2 l}\left\{-\left(\mathcal{D}^{2}\right)^{l}+q^{-l} \mathcal{D}^{l} \mathcal{Q}_{l}\left(\left(q+q^{-1}\right) C \mathcal{D}^{-1}\right)\left(C-\lambda X_{0}\right)^{l}-\left(C-\lambda X_{0}\right)^{2 l}\right\} \tag{11}
\end{equation*}
$$

where \mathcal{Q}_{l} is the polynomial of degree l, related to the Chebichev polynomial of the first kind, such that

$$
\begin{equation*}
\mathcal{Q}_{l}\left(x+x^{-1}\right)=x^{l}+x^{-l} \tag{12}
\end{equation*}
$$

and where \mathcal{D} is defined by

$$
\begin{equation*}
\mathcal{D}^{2}=C^{2}-\lambda^{2} C_{2}^{\prime} \tag{13}
\end{equation*}
$$

Note that the right-hand side of (11) is a well-defined polynomial of degree l in \mathcal{D}^{2}, and hence in C_{2}^{\prime}.

To prove formula (11), we proceed as in [12]: we first prove by a simple recursion
$X_{-}^{p} X_{+}^{p}=\lambda^{-2 p} \prod_{r=0}^{p-1} q^{-2 r-1}\left\{-q \mathcal{D}^{2} q^{2 r}+\left(q+q^{-1}\right) C\left(C-\lambda X_{0}\right)-q^{-1}\left(C-\lambda X_{0}\right)^{2} q^{-2 r}\right\}$
and then let $p=l$, so that the operand runs over all the powers of q^{2}.

3. Finite-dimensional irreducible representations of \mathcal{B}

We now give the classification of finite-dimensional irreducible representations when $q^{2 l}=1$, insisting on those with no highest weight (and/or lowest weight) vector, which were not considered in [6]. We use module notations.

On any finite-dimensional simple module, the central elements $C, C_{2}^{\prime}, X_{ \pm}^{l}$ and $\left(C-\lambda X_{0}\right)^{l}$ act as scalars (diagonal matrices with a single eigenvalue), which we denote respectively by $c, c_{2}^{\prime}, x_{ \pm}^{l}$ and z, and which satisfy the relation (obtained from (11))

$$
\begin{equation*}
x_{-}^{l} x_{+}^{l}=q^{l(l-1)} \lambda^{-2 l}\left\{-\left(d^{2}\right)^{l}+q^{-l} d^{l} \mathcal{Q}_{l}\left(\left(q+q^{-1}\right) c d^{-1}\right) z-z^{2}\right\} \tag{15}
\end{equation*}
$$

where $d^{2} \equiv c^{2}-\lambda^{2} c_{2}^{\prime}$. Note that (15) is a polynomial of degree l in d^{2}, and hence in c_{2}^{\prime}.
Let M be a finite-dimensional simple module. There exists in M a vector v_{0} such that, in addition to $C v_{0}=c v_{0}, C_{2}^{\prime} v_{0}=c_{2}^{\prime} v_{0}, X_{ \pm}^{l} v_{0}=x_{ \pm}^{l} v_{0}$ and $\left(C-\lambda X_{0}\right)^{l} v_{0}=z v_{0}$, we also have

- $X_{0} v_{0}=x_{0} v_{0}$ with $z=\left(c-\lambda x_{0}\right)^{l}$,
- $M=\operatorname{span}\left\{X_{+}^{p} v_{0}, X_{-}^{p} v_{0}\right\}_{p=0, \ldots, l-1}$ (these vectors being linearly dependent).

The existence of v_{0} satisfying the first property is guaranteed by the finite dimension. The second property is proved by writing $M=\mathcal{B} \cdot v_{0}$, using the basis (6), and observing that $X_{ \pm}^{p} v_{0}$ are eigenvectors of C, C_{2}^{\prime} and X_{0}.

3.1. First case $: z \neq 0$ and $x_{-} \neq 0$ (X_{-}acts injectively)

We define

$$
\begin{equation*}
v_{p}=x_{-}^{-p} X_{-}^{p} v_{0} \quad\left(v_{l} \equiv v_{0}\right) \tag{16}
\end{equation*}
$$

Then
$X_{0} v_{p}=\left(q^{2 p} x_{0}-q^{p}[p] c\right) v_{p}$
$X_{-} v_{p}=x_{-} v_{p+1}$
$X_{+} v_{p}=x_{-}^{-1} \lambda^{-2}\left\{-d^{2}+\left(1+q^{-2}\right) c\left(c-\lambda x_{0}\right) q^{2 p}-q^{-2}\left(c-\lambda x_{0}\right)^{2} q^{4 p}\right\} v_{p-1}$.
The action of X_{+}on v_{p} is computed using $X_{+} v_{p}=x_{-}^{-1} X_{+} X_{-} v_{p-1}$ and equation (10). The module spanned by $v_{p}, p=0, \ldots, l-1$ is simple since the eigenvectors v_{p} of X_{0} correspond to l different eigenvalues (this would not be the case with $z=0$).

This class of periodic (or semiperiodic when $x_{+}=0$) l-dimensional representations is then characterized by the five complex parameters $c, c_{2}^{\prime}, x_{ \pm}^{l}$ and z, related by the polynomial relation (15).

3.2. Second case: $z \neq 0, x_{-}=0$ and $x_{+} \neq 0$ (X_{+}acts injectively, but not $\left.X_{-}\right)$

This case is symmetric to a subcase of the previous one, for which $x_{+}=0$ was not excluded.

Let $w_{0}=v_{0}$ (such that $X_{0} w_{0}=x_{0} w_{0}$) requiring further that $X_{-} w_{0}=0$. Such a vector exists because: (i) X_{-}is nilpotent; (ii) the eigenspace of X_{-}related to the eigenvalue 0 is stable under the action of X_{0}. We have $c_{2}^{\prime}=q^{2} x_{0}^{2}-q c x_{0}$ and $z=\left(c-\lambda x_{0}\right)^{l}$. We define

$$
\begin{equation*}
w_{p}=x_{+}^{-p} X_{+}^{p} w_{0} \quad\left(w_{l} \equiv w_{0}\right) \tag{20}
\end{equation*}
$$

Then
$X_{0} w_{p}=\left(q^{-2 p} x_{0}+q^{-p}[p] c\right) w_{p}$
$X_{+} w_{p}=x_{+} w_{p+1}$
$X_{-} w_{p}=x_{+}^{-1} \lambda^{-2}\left\{-d^{2}+\left(1+q^{2}\right) c\left(c-\lambda x_{0}\right) q^{-2 p}-q^{2}\left(c-\lambda x_{0}\right)^{2} q^{-4 p}\right\} w_{p-1}$.
The action of X_{-}on w_{p} is computed using $X_{-} w_{p}=x_{+}^{-1} X_{-} X_{+} w_{p-1}$ and equation (8). The module spanned by $w_{p}, p=0, \ldots, l-1$ is again simple.

This class of semiperiodic l-dimensional representations is then characterised by the three complex parameters c, x_{0}, x_{+}^{l}. The parameters c_{2}^{\prime} and z are related to those by $c_{2}^{\prime}=q^{2} x_{0}^{2}-q c x_{0}$ and $z=\left(c-\lambda x_{0}\right)^{l}$.

3.3. Third case: $z \neq 0$ and $x_{-}=x_{+}=0$ (highest weight and lowest weight representation)

This case has been studied in details in [6]. We just give a summary of the classification given there.

- There are one-parameter irreducible representations of dimension $n<l$, described by

$$
\begin{align*}
& C v_{p}=c v_{p} \tag{24}\\
& X_{0} v_{p}=\lambda^{-1}\left(c-q^{2 p} \nu\right) v_{p} \tag{25}\\
& X_{-} v_{p}=v_{p+1} \quad X_{-} v_{n-1}=0 \tag{26}\\
& X_{+} v_{p}=\lambda^{-1}[p] q^{p-2} \nu\left\{\left(q^{2}+1\right) c-\left(q^{2 p}+1\right) \nu\right\} v_{p-1} \tag{27}
\end{align*}
$$

with the constraint $\left(q^{2}+1\right) c=\left(q^{2 n}+1\right) \nu \dagger$ and $v \neq 0$. Note that when $l=2, n=1$, this is a two-parameter representation.

- There are l-dimensional irreducible representations, also described by (27) (with $n=l$), and characterized by two parameters c and $v \neq 0$, with the constraint that $\left(q^{2}+1\right) c-\left(q^{2 p}+1\right) v \neq 0$ for $p=1, \ldots, l-1$. These representations do not exist when $l=2$.

3.4. Fourth case: $z=0$

Supposing first $x_{-} \neq 0$, we define $v_{p}, p=0, \ldots, l-1$ as in the first case. The action of $X_{0}, X_{ \pm}$are as in (17)-(19). Now, this defines a reducible representation since all the eigenvalues of X_{0} are equal. Irreducible one-dimensional subrepresentations are defined by any vector $v=\sum_{p=0}^{l-1} q^{2 k p} v_{p}$, and

$$
\begin{array}{ll}
C v=c v & c-\lambda x_{0}=0 \\
C_{2}^{\prime} v=c_{2}^{\prime} v & \text { with } x_{ \pm}^{\prime}=q^{ \pm 2 k} x_{ \pm} \tag{28}\\
X_{0} v=x_{0} v & x_{+} x_{-}=c_{2}^{\prime}-\lambda^{-2} c^{2}=-\lambda^{-2} d^{2} \\
X_{ \pm} v=x_{ \pm}^{\prime} v &
\end{array}
$$

Considering then the case $x_{-}=0, x_{+} \neq 0$, and following the construction defined by (20)-(23) again leads to (28). The case $z=x_{-}=x_{+}=0$, already in the classification of [6], is also described by (28).
\dagger Note that with this parametrization, it is not necessary to distinguish the case $q^{2 n}+1=0$, i.e. $n=l / 2$, when l is even, for which $c=0$. This is, however, not true for representations of \mathcal{A}, for which $c=1$.

This class of one-dimensional representations described by (28) is characterized by three continuous parameters $x_{0}, x_{ \pm}^{\prime}$.

Remark. Even in the case when q is generic, there exists (semi)periodic representations of dimension 1, given by

$$
\begin{equation*}
X_{0} v=x_{0} v \quad C v=c v \quad X_{ \pm} v=x_{ \pm} v \quad \text { with } c-\lambda x_{0}=0 \tag{29}
\end{equation*}
$$

3.5. Representations of \mathcal{A}

The irreducible finite-dimensional representations of \mathcal{A} are given by fixing $c=1$ in the previous classification. This is generally possible, except for the representations of dimension $l / 2$ (when $l / 2 \in \mathbb{N}$) for which the constraint was $c=0$.

4. Finite-dimensional irreducible representations of \mathcal{F}

The algebra \mathcal{F} is defined from \mathcal{B} as its quotient by the relation $C^{2}=1+\lambda^{2} C_{2}^{\prime}$, i.e. $\mathcal{D}^{2}=1$ (13). One obtains the irreducible finite-dimensional representations of \mathcal{F} from those of \mathcal{B} by imposing the supplementary condition $d^{2}=c^{2}-\lambda^{2} c_{2}^{\prime}=1$ on the parameters. Generically, the parameters are then $c, x_{ \pm}^{l}$ and z, eigenvalues of $C, X_{ \pm}^{l}$ and $\left(C-\lambda X_{0}\right)^{l}$, related by

$$
\begin{equation*}
x_{-}^{l} x_{+}^{l}=q^{l(l-1)} \lambda^{-2 l}\left\{-1+q^{-l} d^{l} \mathcal{Q}_{l}\left(\left(q+q^{-1}\right) c\right) z-z^{2}\right\} \tag{30}
\end{equation*}
$$

We still consider only the case when q is a root of unity. The classification is then the following.

4.1. First case: $z \neq 0$ and $x_{-} \neq 0$

The representations with injective action of X_{-}, of dimension l, are described by (16)-(19) with $d^{2}=1$. They depend on the parameters $c, x_{ \pm}^{l}$ and z, related by (30).
4.2. Second case $: z \neq 0, x_{-}=0$ and $x_{+} \neq 0$

The representations with nilpotent action of X_{-}and injective action of X_{+}, of dimension l, are described by (20)-(23) with $d^{2}=1$. This class of semiperiodic l-dimensional representations depends on the parameters v, x_{+}^{l}, from which c, x_{0} and z are given by $c=\left(q v+q^{-1} v^{-1}\right) /[2], x_{0}=\lambda^{-1}(c-v)$ and $z=v^{l}$.

4.3. Third case: $z \neq 0$ and $x_{-}=x_{+}=0$

This case corresponds to the classification in [6].

- The representations of dimension $n<l$ are described by (27) with [2] $c=q^{-1} v+q v^{-1}$ and $v^{2}=q^{-2 n+2}$. Hence, they are labelled by the dimension n and a sign ϵ such that $v=\epsilon q^{-n+1}$.
- The representations of dimension l are described by (27) with again [2] $c=q^{-1} v+$ $q v^{-1}$, and now $v^{2} \neq q^{-2 p+2}$ for $p=1, \ldots, l-1$. They are labelled by one parameter v.

4.4. Fourth case: $z=0$

The unusual representations of dimension 1 described by (28) still exist for \mathcal{F}, with $d^{2}=1$. These representations are necessarily periodic since $x_{+} x_{-}=-\lambda^{-2}$, which explains why they are not in the classification of [6]. They depend on two parameters x_{0} and x_{+}.

Acknowledgment

This work was partially supported by European Community contract TMR FMRXCT96.0012.

References

[1] Drinfeld V 1986 Quantum groups Proc. Int. Congress of Mathematicians (Berkeley, CA) vol 1 (New York: Academic) p 798
[2] Jimbo M 1985 q-difference analogue of $\mathcal{U}(\mathcal{G})$ and the Yang-Baxter equation Lett. Math. Phys. 1063
[3] Majid S 1994 Quantum and braided Lie algebras J. Geom. Phys. 13307
[4] Delius G W and Huffmann A 1996 On quantum Lie algebras and quantum root systems J. Phys. A: Math. Gen. 29 1703-22
[5] Lyubashenko V and Sudbery A 1995 Quantum Lie algebras of type A_{n} J. Math. Phys. 39 3487-504
[6] Dobrev V K and Sudbery A 1998 Representations of the generalized Lie algebra $\operatorname{sl}(2)_{q}$ J. Phys. A: Math. Gen. 316635
[7] Sklyanin E K 1983 Some algebraic structures connected with the Yang-Baxter equation. Representations of quantum algebras Funct. Anal. Appl. 17273
[8] Roche P and Arnaudon D 1989 Irreducible representations of the quantum analogue of $S U(2)$ Lett. Math. Phys. 17295
[9] Bazhanov V V and Kashaev R M 1991 Cyclic 1 operator related with a three state r matrix Commun. Math. Phys. 136 607-24
[10] Date E, Jimbo M, Miki K and Miwa T 1991 Generalized chiral potts models and minimal cyclic representations of $\mathcal{U}_{q}(\widehat{g l}(n, \mathbb{C}))$ Commun. Math. Phys. 137133
[11] Arnaudon D and Bauer M 1997 Scasimir operator, scentre and representations of $\mathcal{U}_{q}(\operatorname{osp}(1 \mid 2))$ Lett. Math. Phys. 40 307-20
[12] Kerler T 1989 Darstellungen der quantengruppen und anwendungen Diplomarbeit ETH-Zurich

